If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7c^2-14c=0
a = 7; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·7·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*7}=\frac{0}{14} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*7}=\frac{28}{14} =2 $
| 1/5(-3/2x+7/3)=91/6-71/8x | | x+2.89=3.18 | | 2018=10x | | -f−8=3f+8 | | 4q=10+5q | | v+4=2 | | 49^(2x+1)÷(7)^1/3=1/343 | | 1/4(2x+3)+1=2/3x-1/4 | | -4-x=-8+8(x-4) | | 5(2+3q=) | | 5-2(x+4)=4(2x+3) | | 8|5a=-6 | | -3b=-8-8(4b-1) | | 5x+6=3(4x+2) | | 0.6(x-3)=0.1x+4-7+0.9x | | 4-10b=1.5;b=0.25 | | 7^(2x+2/3)=(343)^-1 | | 3x+8-16+2x=6x-3 | | 8x=27+36 | | 12x-5(x+3)=7x+3 | | 3/x-2=(1/x-1)+(7/(x-1)(x-2)) | | x+2=10x-1 | | 2(4x-1)=5x-2+3x | | (x+4/2)=-7 | | 10p-8=8p+10+9 | | 2y-11=2y+12 | | 4+x+3=4x-4 | | -3(b+1)=2(1-b | | 2-3(x-8)=11 | | y+y+1=y+y+1 | | x-2.6=-4.6 | | 1/2(x-8)=-9 |